Note: In this problem set, expressions in green cells match corresponding expressions in the
text answers.

Clear["Global™ *"]

5. CAS problem. Partial sums.

In example 1 in the text verify the values of Ay, A1, Az, A3 and compute

As, -+, Aqo. Try to find out graphically how well the corresponding partial sums of (23)
approximate the given boundary function.

The text gives the helpful info that M=n/2 for even n; M= (%l for odd n.

55 (2n+ 1) (2n-2m)!
n = —Sum[(—l)m ; {m, O, M}]7
2n m! (n-m)! (n-2m+1)!
55 (2n + 1) (2n-2m)!
An0 = ————sum|[ (-1)" , {m, 0, 0}] /.n>0
2n m! (n-m)! (n-2m+1)!
55
55 (2n+ 1) (2n-2m)!
Anl = Sum[ (-1)™ , {m, 0,0}]/.n>1
2n m! (n-m)! (n-2m+1)!
165
55 (2n + 1) (2n-2m)!
An2 = —Sum[(-l)m , {m, 0, 1}] /.n->2
2n m! (n-m)! (n-2m+ 1) !
(0]
55 (2n+1) (2n-2m)!
An3 = sum[ (-1)™ ,{m, 0,1}] /.n>3
2n m! (n-m)! (n-2m+1)!
385
8
55 (2n+ 1) (2n-2m)!
An4 = Sum[ (-1)™ ,{m, 0,2}]/.n>4
2n m! (n-m)! (n-2m+1)!
(0]
55 (2n+1) (2n-2m)!
AnS5S = Sum[(—l)m ;, {m, O, 2}] /.n->5
2n m! (n-m)! (n-2m+ 1) !
605



2 | 12.11 Laplace’s Equation in Cylindrical and Spherical Coordinates. Potential 593.nb

55 (2n+ 1) (2n-2m)!
Ané = —Sum[(—l)“‘ , {m, 0, 3}] /.n->6
2n m! (n-m)! (n-2m+ 1) !
0
55 (2n+ 1) (2n-2m)!
An7 = ————sum[ (-1)" ,{m, 0,3}]/.n>7
2n m! (n-m)! (n-2m+1)!
4125
128
55 (2n+ 1) (2n-2m)!
An8 = ——————sum[ (-1)" , {m, 0,4}]/.n>8
2n m! (n-m)! (n-2m+ 1) !
0
An9=55(2;1)8um[(—1)m (2n-2m)! , {m, 0, 4}] /.n>9
2n m! (n-m)! (n-2m+ 1) !
7315
256
55 (2n+ 1) (2n-2m)!
Anl0 = ————sum[ (-1)" , {m, 0, 5}] /.n-10
2n m! (n-m)! (n-2m+1)!
0

The green cells above match the text answer.

The boundary function is:

flo_] =Piecewise[{{110, 0<¢< ;l}, {0, 721<¢57r}}]
{110 0<¢<Z

0 True
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Plot[{{£[¢]}, {An9}, {An7}, {An5}, {An3}, {Anl}},

-t .
{o, P 2—}, PlotLegends - Automatic]|

100

50

=50+

An9=orange; An7=green; An5=red; An3=purple; Anl=brown; f(¢)=teal

8 - 15 Potentials Depending only on r

9. Spherical symmetry. Show that the only solution of Laplace’s equation depending on

—\/ + y? +2% isu= i—+ k with constant c and k.

The s.m. solves this problem in spherical coordinates. Differentiation is applied, and per-
haps the key discovery is a form equivalent to an Euler-Cauchy equation, numbered line (1)
on p. 71. Equivalence to the proposed equation is established, but I did not notice argu-
ments advanced for exclusivity. Maybe I missed some implied references.

13. Dirichlet problem. Find the electrostatic potential between two concentric spheres of
radii r; =2 cm and r, = 4 cm kept at the potentials U; =220 V and U,=140 V, respec-
tively. Sketch and compare the equipotential lines in problems 12 and 13.
Clear["Global™ *"]
This probem is covered in the s.m. The s.m. notes that a spherically symmetric solution of

the 3D Laplace equation is

c . .
u=ulr] = —+ k wherec, kare constants, as has just been shown in problem 9.
r

The constants can be determined by the two boundary conditions u(2) =220 and u(4)
=140.

(o] C
Solve[;+k== 220 && ;+2k== 280, {c, k}]

{{c~ 320, k- 60}}
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making the solution

320

r

u[r] = + 60;

Clear["Global ™ *"]

The green cell above matches the text answer. As for the sketch, an attempt is made below:

scalarField2 = x? + y? + z2;
scalarField4 = x2 + y? + z?;

vectorField = D[scalarField2, {{x, y, 2}}]
{2x, 2y, 22}

c2 = ContourPlot3D[scalarField2 == 2, {x, -2, 2}, {y, -2, 2},

{z, -2, 2}, Mesh » None, ContourStyle » Opacity[1.0, Green]];

c3 = ContourPlot3D[scalarField4 == 4, {x, -2, 0}, {y, -2, 2},

{z, -2, 2}, Mesh » None, ContourStyle » Opacity[0.3, Red]];

v = VectorPlot3D[vectorField, {x, -2, 2}, {y, -2, 2}, {2z, -2, 2},
VectorPoints » 15, VectorScale - {0.1, Scaled[0.6]},
RegionFunction -» Function[{x, y, 2z}, 2.3 < scalarField2 <3.5]];

Show [

c2,
c3,
v]

The above plot is an attempt to make something that looks right, though it is not, really. I
first restricted the domain of scalarfield2 to [-2,0], just like scalarfield4, so I could check to
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see where the normal arrows were emerging from (I wanted them to emerge from the
surface of scalarfield2.) Using the value 2.3 for region function min had the roots of the
arrows just barely showing through the skin of scalarfield2 (but it was totally a visual judg-
ment.) Likewise, using 3.5 for region function max seemed to bring the arrows to the sur-
face of scalarfield4, or close to it. It would be interesting to know the actual commands to
use to get a realistic plot.

16 -20 Boundary Value Problems in Spherical Coordinates r, 6, ¢
Find the potential in the interior of the sphere r = R = 1 if the interior is free of charges
and the potential on the sphere is

17. f(¢)=1

Clear["Global  *"]

Since problem 19 is covered in the s.m., it was worked first. As in that problem, I suppose

that the formula from numbered line (16a) on p. 596 is needed,
uplr_, ¢_]1 =An 1" P, Cos[¢]

Only the zeroth coefficient and the zeroth term of the Legendre polynomial is needed, I
guess:

LegendreP[0, O, x]

1

The A, coefficient, I believe, is 1. So the answer should be:

u[r_, ¢ ] =1r%1LegendreP[0, 0, ¢]

1

The above answer matches the answer in the text. I hope I did not put in too many 1s.
19. f(¢)=Cos[2 ¢]

Clear["Global™ *"]

This problem is covered in the s.m., and I don’t see a way for Mathematica to reduce the
solution path. The narrative starts out with a reference to Fourier-Legendre series,

ag Po + a; P; + a Py + --- where Py, Pq,

P, are Legendre polynomials. The s.m. wants to use the

substitution w=Cos[¢]. In order to use Legendre polynomials, which involve powers of w, it
will be necessary to transform the starting function Cos[2 ¢] into powers of Cos[¢]. The
s.m. pulls a trig identity from numbered line (10) of p. A-64,

cos®x = %(1 +cos2x), leadingtoCos[26] =2Cos[6]%2-1=2w? -1
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With regard to Legendre polynomials, the s.m. notes that:

LegendreP[0, O, x]
1

LegendreP[1, O, x]

X

LegendreP[2, 0, x]

% (-1 +3x2)

The s.m. states that, based on 2w? — 1, the Legendre polynomial powers of 0 and 2 will be

needed (power 1 dropped). Introducing working coefficients A and B,

2w? - 1 == ALegendreP[0, O, w] + BLegendreP[2, 0, w]
1

-1+2w?=A+ 2—B(—1+3w2)

Expand [%]

3 B w?
2

B
-1+2w?==A- —+
2

3B
Solve[2—== 2, B]
4
{2~ 2}
Sole—l--A—B— A
ve[-1 == 5 }]

{{AQ:-(_zw)}}

%/.B-> —
3

{{as-2)

Folding A and B into the cyan cell above,
1 4
2w? - 1==- 3—LegendreP[0, 0, w] + ;LegendreP[Z, 0, wl;
The s.m. notes that numbered line (16a) on p. 596 is needed,

Uplr_, ¢_] = Aq 1™ P, Cos|¢]

As for what the yellow cell represents, it is the zeroth term and the 2nd term of the series
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just introduced, the first term having dropped out as noted above. Putting it in terms of

u(r,¢),
1 4
ulfr_, ¢_1 = - 3—Po Cos[¢] + ;rz P; Cos[¢];

The above cell matches the answer in the s.m., with the notation P, replacing the Mathemat-
ica LegendreP notation, and the value of Py, which is 1, not yet substituted. As for the text

answer, the term - é— Py Cos [¢] is given as simply - ir, and so does not agree in this case
with the s.m.



